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6 Post-Minkowskian theory: Formulation

In this chapter we embark on a general program to specialize the formulation of general
relativity to a description of weak gravitational fields. We will go from the exact theory,
which governs the behavior of arbitrarily strong fields, such as those of neutron stars and
black holes, to a useful approximation that applies to weak fields, such as those of planets,
main-sequence stars, and white dwarfs. This approximation will reproduce the predictions
of Newtonian theory, but we will formulate a method that can be pushed systematically
to higher and higher order to produce an increasingly accurate description of a weak
gravitational field. We shall find that the method is so successful that it can actually handle
fields that are not so weak. For example, it provides a perfectly adequate description of
gravity at a safe distance from a neutron star, and it can be used as a foundation to study
the motion of a binary black-hole system, provided that the mutual gravity between bodies
is weak.

The foundation for these methods is “post-Minkowskian theory,” the topic of this chapter
and the next. In post-Minkowskian theory the strength of the gravitational field is measured
by the gravitational constant G, and the Einstein field equations are formally expanded
in powers of G. At zeroth post-Minkowskian order there is no field, and one deals with
Minkowski spacetime. At first post-Minkowskian order the gravitational field appears as
a correction of order G to the Minkowski metric, and the (linearized) field equations are
integrated to obtain this correction. The correction is refined by terms of order G2 in the
second post-Minkowskian approximation, and the process is continued until the desired
degree of accuracy is achieved.

The formulation of the Einstein field equations that is best suited to this post-
Minkowskian expansion was put forward by Landau and Lifshitz, and this framework
is introduced in Sec. 6.1. In Sec. 6.2 we refine the Landau–Lifshitz formulation by impos-
ing the harmonic coordinate conditions, and we show that the exact field equations can be
expressed as a set of ten wave equations in Minkowski spacetime, with complicated and
highly non-linear source terms. We explain how the metric can be systematically expanded
in powers of the gravitational constant G and inserted within the wave equations; these are
iterated a number of times, and each iteration increases the accuracy of the solution by one
power of G.

In Sec. 6.3 we develop mathematical techniques to integrate the wave equation in flat
spacetime. We begin by introducing the retarded Green’s function for the wave equation,
and we explain how the solution can be expressed as an integral over the past light cone
of the spacetime point at which it is evaluated. Our methods involve a partition of three-
dimensional space into near-zone and wave-zone regions, and we describe how the light-
cone integral, decomposed into near-zone and wave-zone contributions, can be evaluated.
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In Chapter 7 we implement the techniques developed here and construct the second
post-Minkowskian approximation to the metric of a weakly curved spacetime. The post-
Minkowskian approximation does not rely on an assumption that the matter distribution
moves slowly. While this may be the typical context – in a gravitationally bound system,
weak gravitational fields induce slow motions – we shall nevertheless divorce the weak-
field assumption from a logically distinct slow-motion assumption, which is not required
for the developments of this chapter. We shall eventually return to slow motions, however,
and formulate an approximation method that incorporates both weak-field and slow-motion
aspects. This is the domain of post-Newtonian theory, an approximation to general rela-
tivity that combines an expansion in powers of G (to measure the strength of the field)
with an expansion in powers of c−2 (to measure the velocity of the matter distribution).
Post-Newtonian theory is informally introduced in Chapter 7, but it is developed more
systematically in Chapters 8, 9, and 10. The other main applications of post-Minkowskian
theory, gravitational waves and radiation reaction, are the subject of Chapters 11 and 12.

6.1 Landau–Lifshitz formulation of general relativity

6.1.1 New formulation of the field equations

The post-Minkowskian approach to integrate the Einstein field equations is based on the
Landau and Lifshitz formulation of these equations. In this framework the main variables
are not the components of the metric tensor gαβ but those of the “gothic inverse metric”

gαβ := √−ggαβ, (6.1)

where gαβ is the inverse metric and g the metric determinant. The factor of
√−g implies

that gαβ is not a tensor; such objects, which differ from tensors by factors of the metric
determinant, are known as tensor densities. Knowledge of the gothic metric is sufficient to
determine the metric itself: note first that det[gαβ] = g, so that g can be directly obtained
from the gothic metric; then Eq. (6.1) gives gαβ , which can be inverted to obtain gαβ .

In the Landau–Lifshitz formulation, the left-hand side of the field equations is built
from

Hαμβν := gαβgμν − gανgβμ. (6.2)

This tensor density is readily seen to possess the same symmetries as the Riemann tensor,

Hμαβν = −Hαμβν, Hαμνβ = −Hαμβν, Hβναμ = Hαμβν. (6.3)

It also satisfies the remarkable identity

∂μν Hαμβν = 2(−g)Gαβ + 16πG

c4
(−g)tαβ

LL , (6.4)
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in which Gαβ is the Einstein tensor, and

(−g)tαβ

LL := c4

16πG

{
∂λg

αβ∂μg
λμ − ∂λg

αλ∂μg
βμ + 1

2
gαβgλμ∂ρg

λν∂νg
μρ

− gαλgμν∂ρg
βν∂λg

μρ − gβλgμν∂ρg
αν∂λg

μρ + gλμgνρ∂νg
αλ∂ρg

βμ

+ 1

8

(
2gαλgβμ − gαβgλμ

)(
2gνρgστ − gρσ gντ

)
∂λg

ντ ∂μg
ρσ

}
(6.5)

is the Landau–Lifshitz pseudotensor, so named because it does not transform as a tensor
under a general coordinate transformation; the quantity ∂μν Hαμβν is also a pseudotensor,
and (−g)Gαβ is a tensor density. Equation (6.4) is valid for any spacetime, whether or not
its metric is a solution to the Einstein field equations.

The identity of Eq. (6.4) implies that the Einstein field equations, Gαβ = (8πG/c4)T αβ ,
can be expressed in the alternative, non-tensorial form

∂μν Hαμβν = 16πG

c4
(−g)

(
T αβ + tαβ

LL

)
. (6.6)

As promised, the left-hand side involves Hαμβν , and the right-hand side is built from T αβ ,
the energy-momentum tensor of the matter distribution, and tαβ

LL . This form of the field
equations provides the Landau–Lifshitz pseudotensor with a loose physical interpretation:
it represents the distribution of gravitational-field energy in spacetime, which is added to
the matter contribution on the right-hand side of the field equations.

By virtue of the antisymmetry of Hαμβν in the last pair of indices, we have that the
equation

∂βμν Hαμβν = 0 (6.7)

holds as an identity. This, together with Eq. (6.6), implies that

∂β

[
(−g)

(
T αβ + tαβ

LL

)] = 0. (6.8)

These are conservation equations for the total energy-momentum pseudotensor, expressed in
terms of a partial-derivative operator. These equations are equivalent to the usual expression
of energy-momentum conservation, ∇β T αβ = 0, which involves only the matter’s energy-
momentum tensor and a covariant-derivative operator.

As we have seen, Eqs. (6.6) and (6.8) suggest that tαβ

LL can be interpreted as an energy-
momentum (pseudo)tensor for the gravitational field, and this interpretation is supported
by the fact that the Landau–Lifshitz pseudotensor is quadratic in ∂μg

αβ , just as the energy-
momentum tensor of the electromagnetic field is quadratic in ∂μ Aα . This interpretation,
however, is not to be taken literally. It is, after all, based on a very specific reformulation of
the Einstein field equations, and other reformulations would give rise to other candidates
for the energy-momentum pseudotensor. And it is based on a non-tensorial quantity whose
numerical value can change arbitrarily by performing a coordinate transformation; indeed,
tαβ

LL can be made to vanish at any selected event in spacetime by adopting Riemann normal
coordinates in the neighborhood of this event (refer to Sec. 5.2.5). The literature abounds
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with attempts to introduce the energy-momentum tensor for the gravitational field. Such an
object does not exist; do not fall prey to false prophets.

Box 6.1 Two versions of energy-momentum conservation

We state in the text that the two versions of energy-momentum conservation, ∇βT αβ = 0 and
∂β[(−g)(T αβ + tαβ

LL)] = 0, are equivalent. In fact, there is an important conceptual difference between
these statements. The first equation is a direct consequence of the local conservation of energy-momentum,
as observed in a local inertial frame; as such it is valid whether or not Einstein’s equations are satisfied, or in-
deed, whether or not general relativity is the correct theory of gravity. The fact that it is compatible with the
Bianchi identity,∇βGαβ = 0, is an added feature specific to Einstein’s theory. There are alternative theories
that lack this consistency, and yet∇β T αβ is still zero.
By contrast, the second conservation equation follows only after using Einstein’s equations to derive

Eq. (6.6). Furthermore, the tedious calculations required to establish that the two versions are equivalent
involve inserting the field equations (6.6) at various critical steps along the way.
The bottom line is that the conservation equation ∇βT αβ = 0 is fundamental; the equation

∂β[(−g)(T αβ + tαβ

LL)] = 0 is a consequence of Einstein’s equations. If Einstein’s equations are satisfied,
then either equation may be adopted to express energy-momentum conservation, and the statements are
equivalent in this sense.

Equations (6.1)–(6.8) form the core of the Landau–Lifshitz framework. It is out of the
question to provide a derivation of these equations (the calculations are straightforward
but extremely lengthy), but the following considerations, borrowed from Landau and Lif-
shitz in their influential book The classical theory of fields, will provide at least a partial
understanding of where they come from.

Let us write down the Einstein field equations, in their usual tensorial form

Gαβ = 8πG

c4
T αβ, (6.9)

at an event P in spacetime, in a local coordinate system such that ∂γ gαβ(P)
∗= 0. (We do

not demand that gαβ
∗= ηαβ at P; the special equality sign

∗= means “equals in the selected
coordinate system.”) In these coordinates the Riemann tensor at P involves only the metric
and its second derivatives, and a short computation reveals that the Einstein tensor is given
by

Gαβ ∗= 1

2

(
gαλgβμgνρ + gβλgαμgνρ − gαλgβρgμν − gαμgβνgλρ

− gαβgμλgνρ + gαβgμνgλρ
)
∂μνgλρ. (6.10)

If we now compute ∂μν Hαμβν , at the same point P and in the same coordinate system, we
find after straightforward manipulations that it is given by

∂μν Hαμβν ∗= (−g)
(
gαλgβμgνρ + gβλgαμgνρ − gαλgβρgμν − gαμgβνgλρ

− gαβgμλgνρ + gαβgμνgλρ
)
∂μνgλρ. (6.11)
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To arrive at this result we had to differentiate (−g) using the rule ∂μ(−g) = (−g)gαβ∂μgαβ ,

which leads to ∂μν(−g)
∗= (−g)gαβ∂μνgαβ . We also had to relate derivatives of the inverse

metric to derivatives of the metric itself; here we have used the rule ∂μgαβ = −gαλgβρ∂μgλρ ,
which leads to ∂μνgαβ ∗= −gαλgβρ∂μνgλρ .

Our results imply that

∂μν Hαμβν ∗= 2(−g)Gαβ . (6.12)

This is the same as Eq. (6.4), because (−g)tαβ

LL
∗= 0 at P by virtue of the fact that each

term in the Landau–Lifshitz pseudotensor is quadratic in ∂μg
αβ , which vanishes at P in the

selected coordinate system. It is therefore plausible that at any other event in spacetime,
and in an arbitrary coordinate system, the identity (6.4) should hold, with a pseudotensor
(−g)tαβ

LL that restores all first-derivative terms that were made to vanish at P in the special
coordinate system. To show that this pseudotensor takes the specific form of Eq. (6.5)
requires a long computation.

6.1.2 Coordinate freedom

The Landau–Lifshitz formulation of general relativity is an exact reformulation of the
standard form of the theory. No approximations are involved, and no restrictions are placed
on the choice of coordinates. It has to be acknowledged, however, that the usefulness of
the formalism is largely limited to situations in which (i) the coordinates xα = (ct, x j )
are modest deformations of the Lorentzian coordinates of flat spacetime, and (ii) gαβ

deviates only moderately from the Minkowski metric ηαβ . For these situations, which form
the context of this book, the formalism is an excellent starting point for a systematic
approximation method.

In other contexts the Landau–Lifshitz formulation can be a terrible approach. Even
a simple problem such as finding the static, spherically symmetric, vacuum solution to
the Einstein field equations, the Schwarzschild metric, which took us about six lines of
mathematics back in Sec. 5.6, turns out to be a horrible undertaking in the Landau–Lifshitz
approach. The lesson is that while the Landau–Lifshitz formulation of the field equations
is mathematically equivalent to the tensorial formulation, it is not equivalent when it comes
to the ease of performing calculations. In the post-Minkowskian context it is the preferred
formulation; in other contexts it decidedly is not.

Given the practical restriction on the coordinate system, it is useful to observe that the
Landau–Lifshitz formulation is manifestly invariant under Lorentz transformations, which
we express in the general form

xμ′ = μ′
α xα, (6.13)

in which the transformation matrix μ′
α is constant and possesses a unit determinant. (In

fact, the formalism is invariant under all transformations that are linear in the coordinates,
so long as the transformation matrix possesses a unit determinant; this ensures that g is not
changed during the transformation. The transformation can also be generalized to include
uniform translations, xμ → xμ + cμ, where cμ is a constant vector.) It is easy to show
that gαβ and its partial derivatives transform as tensors under this class of transformations,
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and from this observation it follows immediately that all equations of the formalism are
invariant under the transformation of Eq. (6.13).

6.1.3 Integral conservation identities

Because they involve a partial-derivative operator, the differential identities of Eq. (6.8)
can immediately be turned into integral identities. We consider a three-dimensional region
V , a fixed (time-independent) domain of the spatial coordinates x j , bounded by a two-
dimensional surface S. We assume that V contains at least some of the matter (so that T αβ

is non-zero somewhere within V ), but that S does not intersect any of the matter (so that
T αβ = 0 everywhere on S).

Total momentum and angular momentum: Volume integrals

We formally define a total momentum four-vector Pα[V ] associated with the region V by
the three-dimensional integral

Pα[V ] := 1

c

∫
V

(−g)
(
T α0 + tα0

LL

)
d3x . (6.14)

This total momentum includes a contribution from the matter’s momentum density c−1T α0,
and a contribution from the gravitational field represented by c−1tα0

LL; the factor of (−g) is
inserted so that we can take advantage of the conservation identities of Eq. (6.8). In flat
spacetime and in Lorentzian coordinates, Pα[V ] would have a firm interpretation as a total
momentum vector associated with the energy-momentum tensor T αβ . In curved spacetime,
and in a coordinate system that cannot be assumed to be Lorentzian, the quantity defined by
Eq. (6.14) does not have any direct physical meaning. It is, nevertheless, a useful quantity
to introduce, as we shall have occasion to recognize.

The momentum four-vector can be decomposed into a time component P0[V ] and a
spatial three-vector P j [V ]. The time component can be used to define an energy E[V ] :=
cP0[V ] associated with the region V . Alternatively, we can define a total mass

M[V ] := 1

c2

∫
V

(−g)
(
T 00 + t00

LL

)
d3x . (6.15)

The three-momentum is given by

P j [V ] := 1

c

∫
V

(−g)
(
T j0 + t j0

LL

)
d3x . (6.16)

In a similar way we introduce a total angular-momentum tensor Jαβ[V ] associated with
the region V . This is defined by

Jαβ[V ] := 1

c

∫
V

[
xα (−g)

(
T β0 + tβ0

LL

) − xβ (−g)
(
T α0 + tα0

LL

)]
d3x, (6.17)

and we note that the tensor is antisymmetric in its indices. The interpretation of Jαβ [V ] is
easier to identify once it is decomposed into time and spatial components. The antisymmetry
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of the tensor implies that J 00[V ] = 0. The time-space components can be expressed in the
form

c−1 J 0 j [V ] = P j [V ]t − M[V ]R j [V ], (6.18)

where

R j [V ] := 1

M[V ]c2

∫
V

(−g)
(
T 00 + t00

LL

)
x j d3x (6.19)

represents the position of the center-of-mass of the region V . Equation (6.18) reveals that
when c−1 J 0 j [V ] is a constant, it fixes the position of the center-of-mass at t = 0; when it
is not a constant it measures the extent by which the center-of-mass fails to move with a
total momentum P j [V ]. The spatial components of the angular-momentum tensor are

J jk[V ] = 1

c

∫
V

[
x j (−g)

(
T k0 + t k0

LL

) − xk (−g)
(
T j0 + t j0

LL

)]
d3x, (6.20)

and this is best recognized in its equivalent vectorial form

J j [V ] := 1

2
ε j

pq J pq [V ] = 1

c

∫
V

ε j
pq x p (−g)

(
T q0 + tq0

LL

)
d3x, (6.21)

where ε j pq is the completely antisymmetric permutation symbol. The integrand is the cross
product between the position vector x p and the momentum density c−1(−g)(T q0 + tq0

LL)
within V , and it is natural to interpret the integral as the total angular momentum contained
in this region.

Total momentum and angular momentum: Surface integrals

The total momentum Pα[V ] and angular momentum Jαβ[V ] were defined previously in
terms of integrals over the three-dimensional region V . It is possible to provide alternative
definitions in terms of surface integrals over the two-dimensional surface S that surrounds
this region. This is advantageous when the volume integrals of Eq. (6.14) and (6.17) are
ill-defined or difficult to compute.

Substituting Eq. (6.6) into Eq. (6.14) gives

Pα[V ] = c3

16πG

∫
V

∂μν Hαμ0ν d3x .

Summation over ν must exclude ν = 0, because Hαμ00 = 0. We therefore have

Pα[V ] = c3

16πG

∫
V

∂k

(
∂μ Hαμ0k

)
d3x,

and this can be written as a surface integral by invoking Gauss’s theorem. We have

Pα[V ] := c3

16πG

∮
S
∂μ Hαμ0k d Sk, (6.22)

where d Sk is an outward-directed surface element on the two-dimensional surface S.
Equation (6.22) can be adopted as an alternative definition for the total momentum enclosed
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by S; Hαμ0k must then be constructed from a solution to Einstein’s equations for the given
distribution of matter.

As before the momentum four-vector can be decomposed into time and spatial compo-
nents. We have that the total mass M[V ] can be expressed as

M[V ] := c2

16πG

∮
S
∂ j H 0 j0k d Sk, (6.23)

and the total three-momentum is

P j [V ] := c3

16πG

∮
S
∂n H jn0k d Sk − c2

16πG

d

dt

∮
S

H 0 j0k d Sk . (6.24)

With similar manipulations we arrive at a surface-integral definition for the total angular
momentum. One of the two terms that occur within the volume integral when we substitute
Eq. (6.6) into Eq. (6.17) is xα∂kμ Hβμ0k , which can be expressed as ∂k(xα∂μ Hβμ0k) +
∂μ Hμβ0α . The first term gives rise to a surface integral, and the second term can be expanded
as ∂0 H 0β0α + ∂k H kβ0α; in this, the first term can be ignored because it is symmetric in α

and β, and the second term gives rise to another surface integral. Collecting results, we
arrive at

Jαβ[V ] := c3

16πG

∮
S

(
xα∂μ Hβμ0k − xβ∂μ Hαμ0k + H 0αkβ − H 0βkα

)
d Sk, (6.25)

and this can be adopted as an alternative definition for the total angular momentum enclosed
by S.

The decomposition of Jαβ[V ] into time and spatial components first returns Eq. (6.18)
together with the alternative expression

M[V ]R j [V ] := c2

16πG

∮
S

(
x j∂n H 0n0k − H 0 j0k

)
d Sk (6.26)

for the position of the center-of-mass. It also returns

J jk[V ] := c3

16πG

∮
S

(
x j∂m H km0n − xk∂m H jm0n + H 0 jnk − H 0knj

)
d Sn

− c2

16πG

d

dt

∮
S

(
x j H 0k0n − xk H 0 j0n

)
d Sn (6.27)

as an alternative definition for the angular-momentum tensor.

Conservation statements

To obtain the conservation statements satisfied by Pα[V ] and Jαβ[V ], we differentiate their
defining expressions (in terms of volume integrals) with respect to x0 and use the local
conservation identity of Eq. (6.8). Starting with Eq. (6.14), we get

d

dx0
Pα[V ] = 1

c

∫
V

∂0

[
(−g)

(
T α0 + tα0

LL

)]
d3x

= −1

c

∫
V

∂k

[
(−g)

(
T αk + tαk

LL

)]
d3x . (6.28)
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Converting this to a surface integral, and recalling our previous assumption that S does not
intersect the matter distribution, so that T αβ = 0 on S, we arrive at

Ṗα[V ] = −
∮

S
(−g)tαk

LL d Sk, (6.29)

in which an overdot indicates differentiation with respect to t := x0/c. The rate of change
of Pα[V ] is therefore expressed as a flux integral over S, and the flux is measured by the
Landau–Lifshitz pseudotensor (recall the definitions of fluxes provided back in Sec. 4.2).
Equation (6.29) gives rise to the individual statements

Ṁ[V ] = −1

c

∮
S
(−g)t0k

LL d Sk (6.30)

and

Ṗ j [V ] = −
∮

S
(−g)t jk

LL d Sk (6.31)

for the fluxes of mass and momentum three-vector across S.
Proceeding along similar lines for the angular-momentum tensor, we arrive at

J̇αβ[V ] = −
∮

S

[
xα(−g)tβk

LL − xβ(−g)tαk
LL

]
d Sk . (6.32)

The symmetry of tαβ

LL was essential in obtaining this result. When decomposed into time
and spatial components, the statement becomes

c−1 J̇ 0 j [V ] = Ṗ j [V ]t + 1

c

∮
S

x j (−g)t0k
LL d Sk (6.33)

and

J̇ jk[V ] = −
∮

S

[
x j (−g)t kn

LL − xk(−g)t jn
LL

]
d Sn . (6.34)

Equation (6.33), when combined with Eq. (6.18), implies that

d

dt

(
M[V ]R j [V ]

) = P j [V ] − 1

c

∮
S

x j (−g)t0k
LL d Sk . (6.35)

6.1.4 Total mass, momentum, and angular momentum

The limit in which V is taken to include all of three-dimensional space is particularly
interesting. In this limit Pα[V ] is known to coincide with the Arnowitt–Deser–Misner
four-momentum of an asymptotically-flat spacetime, and its physical interpretation as a
measure of total momentum is robust. This statement is true whenever the coordinates xα
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coincide with a Lorentzian system at infinity; the coordinates do not have to be Lorentzian
(and indeed, they could not be) at finite spatial distances.

Recalling the definitions of Eqs. (6.15) and (6.23), we define the total mass of the
spacetime as

M := 1

c2

∫
all space

(−g)
(
T 00 + t00

LL

)
d3x (6.36a)

:= c2

16πG

∮
∞

∂ j H 0 j0k d Sk . (6.36b)

Recalling the definitions of Eqs. (6.16) and (6.24), we define the total three-momentum of
the spacetime as

P j := 1

c

∫
all space

(−g)
(
T j0 + t j0

LL

)
d3x (6.37a)

:= c3

16πG

∮
∞

∂n H jn0k d Sk − c2

16πG

d

dt

∮
∞

H 0 j0k d Sk . (6.37b)

Recalling the definitions of Eqs. (6.20) and (6.27), we define the total angular-momentum
three-tensor of the spacetime as

J jk := 1

c

∫
all space

[
x j (−g)

(
T k0 + t k0

LL

) − xk (−g)
(
T j0 + t j0

LL

)]
d3x (6.38a)

:= c3

16πG

∮
∞

(
x j∂m H km0n − xk∂m H jm0n + H 0 jnk − H 0knj

)
d Sn

− c2

16πG

d

dt

∮
∞

(
x j H 0k0n − xk H 0 j0n

)
d Sn. (6.38b)

And finally, recalling Eqs. (6.19) and (6.26), we define

R j := 1

Mc2

∫
all space

(
T 00 + t00

LL

)
x j d3x (6.39a)

:= c2

16πG M

∮
∞

(
x j∂n H 0n0k − H 0 j0k

)
d Sk (6.39b)

as the position of the center-of-mass for the entire spacetime. The mass, momentum, angular
momentum, and center-of-mass position of a spacetime can be defined either in terms of
volume integrals over all space, or in terms of surface integrals at infinity. The surface
integrals are especially powerful because they allow us to determine these quantities directly
from the asymptotic behavior of the metric at large distances; an intimate knowledge of
the material source is not required. This is reminiscent of the situation in electrodynamics:
the total electric charge can be determined by integrating the normal component of the
electric field over a surface enclosing the charge, and nothing need be known of the detailed
distribution of charge within the surface.

Equations (6.30), (6.31), and (6.34) imply that the total mass M , total momentum P j ,
and total angular momentum J jk are constant in time whenever the surface integrals vanish
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in the limit S → ∞. Under these circumstances, we have the conservation statements

M = constant, P j = constant, J jk = constant. (6.40)

Furthermore, it can be shown that whenever the surface integrals vanish, the volume
integrals of Eqs. (6.14) and (6.17) can be evaluated on any spacelike hypersurface and
produce the same result. In particular, the momentum four-vector can be evaluated on a
surface of simultaneity t ′ = constant that is obtained from the original surface t = constant
by a Lorentz transformation; this observation can be used to show that Pα transforms as a
four-vector under the transformation of Eq. (6.13).

In a similar way, Eq. (6.35) implies that M Ṙ j = P j whenever its surface integral van-
ishes, and whenever M itself is a constant. Assuming that P also is constant, we have

M R(t) = M R(0) + P t, (6.41)

where R(0) is the position of the center-of-mass at t = 0. This equation states that the
center-of-mass moves uniformly with a velocity P/M (recall that M = P0/c) .

When Eq. (6.40) holds it is natural to adopt a reference frame in which P vanishes. This
can always be achieved by performing a Lorentz transformation described by Eq. (6.13)
and directing the boost in the direction of the momentum; the boost parameter must be set
equal to v = |P |/M . Once this is accomplished, it is also natural to place the origin of the
spatial coordinates at the center-of-mass R. This can always be achieved by translating the
coordinates according to x → x − c, with c denoting a constant vector. It is easy to see
that the translation changes the position of the center-of-mass according to R → R − c,
and choosing c = R places the center-of-mass at the origin of the spatial coordinates.

These choices define the center-of-mass frame of the spacetime:

center-of-mass frame: P j = 0, R j = 0. (6.42)

As we have seen, this choice can be made whenever P is a constant vector, and whenever
M Ṙ = P . These conditions are fulfilled whenever the surface integrals of Eqs. (6.31) and
(6.35) vanish when S → ∞. This always happens when the spacetime is stationary. In
the context of a radiating spacetime, however, the surface integrals cannot be assumed to
vanish; in fact, the mass, momentum, and angular momentum of the spacetime are typically
seen to change with time because the radiation transports energy, momentum, and angular
momentum away from the source. Fortunately this effect can often be neglected in the
context of approximate calculations.

We conclude this discussion with an illustration: we use the surface integrals to calculate
the mass, momentum, and angular momentum of the Schwarzschild spacetime, first en-
countered back in Sec. 5.6. Expressing the metric of Eq. (5.163) in Cartesian coordinates,
we find that

g00 = −
(

1 − R

r

)
, (6.43a)

g jk = δ jk +
(

1 − R

r

)−1 R

r
n j nk , (6.43b)
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where R := 2G M/c2 and n j := x j/r . It is then simple to show that g = −1 and

g00 = −
(

1 − R

r

)−1

, (6.44a)

g jk = δ jk − R

r
n j nk . (6.44b)

We next compute Hαμ0 j by substituting Eqs. (6.44) into Eq. (6.2), and insert the result within
Eq. (6.22) to calculate Pα[r ], the momentum vector associated with a surface S of constant
r . The computations involve the surface element d Sj = r2n j d� (where d� := sin θ dθdφ

is an element of solid angle), and they lead to P j [r ] = 0 and

M[r ] = M
r

r − 2G M/c2
. (6.45)

The spatial momentum vanishes (as expected, since the coordinates are centered on the
black hole), and in the limit r → ∞ our previous result reduces to

M[∞] = M. (6.46)

The total energy is cP0[∞] = Mc2, and M is recognized as the total gravitational mass
of the Schwarzschild spacetime. A similar calculation reveals that the center-of-mass is
situated at R j = 0 and that the angular momentum vanishes.

6.2 Relaxed Einstein equations

6.2.1 Harmonic coordinates and a wave equation

It is advantageous at this stage to impose the four conditions

∂βg
αβ = 0 (6.47)

on the gothic inverse metric. These are known as the harmonic coordinate conditions,
and they were first encountered back in Sec. 5.6, see Eq. (5.177), in the context of the
Schwarzschild solution. It is also useful to introduce the potentials

hαβ := ηαβ − gαβ, (6.48)

where ηαβ := diag(−1, 1, 1, 1) is the Minkowski metric expressed in Lorentzian coordi-
nates (x0 := ct, x j ). In terms of these potentials the harmonic coordinate conditions read

∂βhαβ = 0, (6.49)

and in this context they are usually referred to as the harmonic gauge conditions. We
observe that the harmonic conditions are preserved under the Lorentz transformations of
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Eq. (6.13), and that the potentials hαβ transform as a tensor under this restricted class of
coordinate transformations.

Box 6.2 Existence of harmonic coordinates

It seems plausible that the four harmonic coordinate conditions of Eq. (6.47) can always be imposed, given
the four degrees of coordinate freedom inherent to general relativity, but it is worthwhile to see this explicitly.
Given an initial coordinate system in which ∂βg

αβ �= 0, we make a coordinate transformation to x ′μ =
f μ(xα). It is then straightforward to show that in the new coordinates,

∂ν ′gμ′ν ′ =
√

−g′ �g f μ(xα) ,

where�g := gμν∇μ∇ν is the curved spacetime d’Alembertian operator acting on each one of the four
functions f μ, treated as a scalar function of xα . Choosing each function to be harmonic, that is, a solution to
�g f μ = 0, ensures that the harmonic coordinate conditions will hold in the new coordinates.

The introduction of the potentials hαβ and the imposition of the harmonic gauge condi-
tions simplify the appearance of the Einstein field equations. It is easy to verify that the
left-hand side becomes

∂μν Hαμβν = −�hαβ + hμν∂μνhαβ − ∂μhαν∂νhβμ, (6.50)

where � := ημν∂μν is the flat-spacetime wave operator. The right-hand side of the field
equations stays essentially unchanged, but the harmonic conditions do slightly simplify the
form of the Landau–Lifshitz pseudotensor; as can be seen from Eq. (6.5), the first two terms
of (−g)tαβ

LL vanish in harmonic coordinates. Isolating the wave operator on the left-hand
side, and putting everything else on the right-hand side, gives us the formal wave equation

�hαβ = −16πG

c4
ταβ (6.51)

for the potentials hαβ , where

ταβ := (−g)
(
T αβ[m, g] + tαβ

LL [h] + tαβ

H [h]
)

(6.52)

is the effective energy-momentum pseudotensor for the wave equation. We have introduced

(−g)tαβ

H := c4

16πG

(
∂μhαν∂νhβμ − hμν∂μνhαβ

)
(6.53)

as an additional (harmonic-gauge) contribution to the effective energy-momentum pseu-
dotensor.

In our expression for ταβ we have indicated that the energy-momentum tensor T αβ is
a functional of matter variables m, in addition to being a functional of the metric tensor
gαβ (which is obtained from the gravitational potentials). As an example, when the matter
consists of a perfect fluid, m collectively denotes variables such as the mass density ρ,
pressure p, and velocity field uα . We have also indicated that the Landau–Lifshitz and
harmonic pseudotensors are functionals of hαβ . As we shall see below, imposition of the
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gauge conditions (6.49) is equivalent to enforcing the conservation equations

∂βταβ = 0, (6.54)

which can be compared with Eq. (6.8). It is easy to verify that (−g)tαβ

H is separately
conserved, in that it satisfies ∂β[(−g)tαβ

H ] = 0 as an identity.
The wave equation of Eq. (6.51) is the main starting point of post-Minkowskian theory.

It is worth emphasizing the fact that this equation, together with Eq. (6.49) or (6.54), is an
exact formulation of the Einstein field equations; no approximations have been introduced
at this stage.

For a metric gαβ to satisfy the complete set of Einstein field equations, it is necessary for
the potentials hαβ to satisfy both the wave equation and the gauge condition/conservation
statement; it is the union of Eq. (6.51) and (6.49) or (6.54) that is equivalent to the original
form of the Einstein field equations, Gαβ = (8πG/c4)T αβ . The two sets of equations play
different roles. The wave equation (6.51) determines the gravitational potentials hαβ[m]
(and therefore the metric) as functions of the harmonic coordinates xα , in terms of the matter
variables m; these, however, remain undetermined until we also involve the conservation
equation (6.54). It is this equation that determines the behavior of the matter variables
in a curved spacetime whose metric is built from hαβ[m]. Solving both sets of equations
therefore determines both the metric and the matter variables. This reminds us of John
Wheeler’s famous words: matter tells spacetime how to curve, and spacetime tells matter
how to move; the decomposition of the field equations into a wave equation and a gauge
condition/conservation statement provides a mathematical representation of this maxim.

We have just seen that when the complete set of Einstein field equations is integrated,
one cannot solve for the metric independently of the matter variables, and one cannot solve
for the matter variables independently of the metric. It is useful to observe, however, that
when the equations are decomposed into the subsets [wave equation] and [gauge condition/
conservation statement], one is entirely free to solve the wave equation (6.51) without also
enforcing the gauge condition of Eq. (6.49) or the conservation statement of Eq. (6.54).
Solving the wave equation independently of the gauge condition/conservation statement
amounts to integrating only a subset of the Einstein field equations, and the procedure
returns ten gravitational potentials hαβ[m] expressed as functionals of undetermined matter
variables m. The metric obtained from these potentials is also a functional of m, and it
is not yet a solution to the Einstein field equations; it becomes a solution only when the
gauge condition/conservation statement is imposed as an additional condition on the matter
variables. The wave equation (6.51), taken by itself independently of Eqs. (6.49) or (6.54),
is known as the relaxed Einstein field equation.

Box 6.3 Wave equation in flat and curved spacetimes

Because it involves second derivatives of the potentials, the term hμν∂μνhαβ on the right-hand side of the
field equationsmight have beenmore appropriately placed on the left-hand side, and joined togetherwith the
wave-operator term. In fact, there is a way of combining all second-order derivatives into a curved-spacetime
wave operator. For this purpose we treat hαβ as a collection of ten scalar fields instead of as a tensor field.
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The scalar wave operator associated with the metric gαβ (which is to be constructed from the potentials) is
denoted�g , and it has the following action on each of the ten potentials:

�ghαβ = 1√−g
∂μ

(√−ggμν∂νhαβ
)

= 1√−g
∂μ

[(
ημν − hμν

)
∂νhαβ

]

= 1√−g

[
�hαβ − hμν∂μνhαβ

]
, (6.55)

where we have used the harmonic gauge conditions in the last step. This expression does indeed involve all
second-derivative terms that appear in Eq. (6.51). The field equations could then be formulated in terms of
�g , and this was, in fact, the approach adopted by Kovacs and Thorne in their series of papers on the gen-
eration of gravitational waves. This approach, while conceptually compelling, is not as immediately useful for
post-Minkowskian theory as the approach adopted here, which is based on theMinkowski wave operator. It is
indeed much simpler to solve the wave equation in flat spacetime than it is to solve it in a curved spacetime
with a complicated (and as yet unknown) metric.

6.2.2 Formal solution to the wave equation

The wave equation of Eq. (6.51) admits the formal solution

hαβ(x) = 4G

c4

∫
G(x, x ′)ταβ(x ′) d4x ′, (6.56)

where x = (ct, x) is a field point and x ′ = (ct ′, x′) a source point. The two-point function
G(x, x ′) is the retarded Green’s function of the Minkowski wave operator, which satisfies

�G(x, x ′) = −4πδ(x − x ′), (6.57)

and which is known to be a function of x − x ′ only. (An explicit expression will be presented
in Sec. 6.3.) This property is sufficient to prove that if the effective energy-momentum
pseudotensor ταβ satisfies the conservation identities of Eq. (6.54), then the potentials
hαβ will satisfy the harmonic gauge conditions of Eq. (6.49). The converse property, that
∂βταβ = 0 when ∂βhαβ = 0, follows immediately from the wave equation (6.51).

To prove that ∂βhαβ = 0 when ∂βταβ = 0, we begin by differentiating Eq. (6.56) with
respect to xβ :

∂βhαβ = 4G

c4

∫
∂βG(x, x ′)ταβ(x ′) d4x ′. (6.58)

Using the previously mentioned property that G(x, x ′) depends on x − x ′ only, we may
write this as

∂βhαβ = 4G

c4

∫ [−∂β ′ G(x, x ′)
]
ταβ(x ′) d4x ′, (6.59)
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in which the Green’s function is now differentiated with respect to x ′β . Integrating by parts,
we arrive at

∂βhαβ = 4G

c4

∫
G(x, x ′)∂β ′ταβ(x ′) d4x ′. (6.60)

This equation reveals directly that hαβ satisfies the harmonic gauge conditions when ταβ is
conserved.

6.2.3 Iteration of the relaxed field equations

The question that concerns us now is this: given the complexity of Eqs. (6.51)–(6.54), how
can we construct solutions for a particular choice of matter variablesm? Our answer will be:
by successive approximations. We shall not attempt to find exact solutions to our equations;
instead, we shall retreat to an approximate context in which our spacetime deviates only
moderately from Minkowski spacetime. To construct the metric of this spacetime we
consider a formal expansion of the form

hαβ = Gkαβ

1 + G2kαβ

2 + G3kαβ

3 + · · · (6.61)

for the gravitational potentials. Such an expansion in powers of G is known as a post-
Minkowskian expansion, and our hope is that the expansion – an asymptotic expansion
that is not expected to converge – will give rise to an acceptable approximation to the
true metric, at least in a useful portion of the spacetime. In the mathematical language of
asymptotic expansions, our hope is that gαβ(x) − gn

αβ(x) = O(Gn+1) when x is within a
wide domain U of the spacetime manifold; here gn

αβ is the metric obtained from Eq. (6.61)
after truncating the asymptotic series to order Gn . Equation (6.61) gives rise to the suc-
cessive approximations hαβ

0 = 0, hαβ

1 = Gkαβ

1 , hαβ

2 = Gkαβ

1 + G2kαβ

2 , and so on, for the
gravitational potentials.

Box 6.4 The expansion parameterG

This development in powers of G is a formal device only. Because G has dimensions, its numerical value
depends on the units in which it is evaluated, and it seems ridiculous to let it play the role of a “small” expan-
sion parameter. For example, we were raised in geometrized units in which G = 1, and this does not look
like a small quantity. The actual expansion parameter in a typical situation involving a characteristic massmc

confined to a regionof characteristic sizerc isGmc/(c2rc),which is small in situations involvingweakgrav-
itational fields. Because the proper specification of the expansion parameter requires additional information
that is specific to each situation considered, it is economical to stick withG as a formal expansion parameter,
and let each physical situation dictate the translation to a meaningful, dimensionless parameter. The absence
of a unique, dimensionless expansion parameter for the Einstein field equations is part of the reason why the
expansions of post-Minkowskian and post-Newtonian theory are believed to be asymptotic sequences that
may not converge.
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In principle we might begin the process of solving the Einstein field equations by
substituting Eq. (6.61) into Eq. (6.51) and plucking out terms that share the same power
of G. In practice, however, it is more convenient to proceed by iterations, as we now
explain.

In the zeroth iteration of the relaxed field equations we set hαβ

0 = 0 and immediately
get g0

αβ = ηαβ , the metric of Minkowski spacetime. From this we construct T αβ[m, g] =
T αβ[m, η], tαβ

LL [h] = tαβ

LL [h0] = 0, and tαβ

H [h] = tαβ

H [h0] = 0. From all this we obtain τ
αβ

0 =
T αβ[m, η]; this is the energy-momentum tensor of the matter variables m, and in the zeroth
iteration these live in Minkowski spacetime.

In the first iteration of the relaxed field equations we solve the wave equation
�hαβ = −(16πG/c4)ταβ

0 for hαβ

1 = Gkαβ

1 . Because the source τ
αβ

0 is known from the
zeroth iteration, the wave equation can be integrated without difficulty (at least in prin-
ciple), and this returns the potentials hαβ

1 as functionals of the matter variables m,
which have yet to be determined. From the potentials we form the metric g1

αβ and con-
struct τ

αβ

1 , an improved version of the effective energy-momentum pseudotensor. This
involves the material contribution T αβ[m, g1], as well as the field contributions tαβ

LL [h1] and
tαβ

H [h1].
In the second iteration of the relaxed field equations we solve the wave equation

�hαβ = −(16πG/c4)ταβ

1 for hαβ

2 = Gkαβ

1 + G2kαβ

2 , an improved version of the gravita-
tional potentials. Because the source τ

αβ

1 is known from the first iteration, the wave equa-
tion can once more be integrated, and hαβ

2 are again functionals of the undetermined matter
variables m. From the new potentials we form the metric g2

αβ and construct τ
αβ

2 , the latest
version of the effective energy-momentum pseudotensor. The stage is ready for the next
iteration.

After n iterations we obtain the potentials hαβ
n = Gkαβ

1 + G2kαβ

2 + · · · + Gnkαβ
n , the

nth post-Minkowskian approximation to the true potentials hαβ . These functions of the
harmonic coordinates xα are functionals of the matter variables m, which must now be
determined. This is accomplished in the very last step of the procedure, the implementation
of the gauge condition/conservation statement, which has not yet been invoked. We thus
impose ∂βhαβ

n = 0 on our iterated solution to the relaxed field equations; this determines
m and returns gn

αβ(x) as a proper tensor field in spacetime. Equivalently, we may enforce
the conservation equation ∂βτ

αβ

n−1 = 0, which (as we have seen) is formally equivalent to
∂βhαβ

n = 0. It is important to observe that while the gauge condition involves hαβ
n , the

conservation statement involves τ
αβ

n−1; these quantities are linked by the iteration procedure
described previously.

Let us illustrate the foregoing discussion by choosing the matter content of the spacetime
to consist of N point masses labeled by an index A = (1, 2, . . . , N ). In this case the
collective matter variables m denote the set of vectors r A(t), which give the position of
each body in the harmonic system of coordinates. After n iterations of the relaxed field
equations we obtain gravitational potentials of the form hαβ

n (xα; r A); these are functions of
the spacetime coordinates xα and functionals of the trajectories r A(t). At this stage of the
procedure the trajectories are not determined; the functions r A(t) are completely arbitrary. In
the final step we enforce the conservation equation ∂βτ

αβ

n−1 = 0, and this produces equations
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of motion of the form

d2r A

dt2
= O(G) + O(G2) + · · · + O(Gn−1) . (6.62)

These are used to determine r A(t), and the task is completed: we have the metric and the
motion of the individual bodies. These considerations indicate that two iterations of the
relaxed field equations are required to obtain the Newtonian equations of motion – the
O(G) term on the right-hand side of Eq. (6.62).

It is important to understand that the iterations must be performed on the relaxed equa-
tions only, and not on the full set of Einstein field equations. In other words, one iterates the
wave equation only, and leaves the gauge condition/conservation statement alone, until the
final iteration is carried out; the gauge condition/conservation statement is enforced in the
very last step of the procedure. It would indeed be misguided to enforce it at every iterative
step. To see why, imagine that we choose to enforce ∂βταβ = 0 immediately at the zeroth
iteration. Because τ

αβ

0 = T αβ[m, η], this is the conservation equation for matter fields in
Minkowski spacetime, and it implies that the matter cannot be subjected to gravitational
interactions. (In the illustrative case of point masses examined previously, the bodies would
have to move on straight lines.) The next iteration would produce hαβ

1 as sourced by this
matter field, and the next version of the conservation statement, ∂βτ

αβ

1 = 0, would imply
that the matter is, after all, subjected to a gravitational interaction. (In our example, the
point masses would now be allowed to move according to the Newtonian equations of
motion, in a gravitational field determined as if the masses were moving on straight lines.)
We have a contradiction, and this tension is best avoided by delaying the implementa-
tion of the gauge condition/conservation statement until the very last step of the iterative
procedure.

As a small technical point, we might mention that the procedure does retain a limited
amount of latitude. As described above, the penultimate step in the iterative procedure is to
solve the wave equation �hαβ = −(16πG/c4)ταβ

n−1 for hαβ
n , given the known source τ

αβ

n−1.

The last step is to impose the additional conditions ∂βτ
αβ

n−1 = 0. These steps can be switched:

once τ
αβ

n−1 is constructed from hαβ

n−1 in the (n − 1)th iteration, one can immediately enforce

the conservation equation ∂βτ
αβ

n−1 = 0. The final step is then to obtain hαβ
n by integrating the

wave equation, and the gauge condition ∂βhαβ
n = 0 will automatically be satisfied by the

solution.
We can be even more flexible. If we are interested only in the equations of motion that

arise from the (n − 1)th iteration, and not in the spacetime metric that is generated by that
motion, then we do not actually have to complete the iterations to obtain hαβ

n . The solutions
hαβ

n−1 are sufficient to insert into the conservation equations ∂βτ
αβ

n−1 = 0, from which the
motion of the system can be determined consistently to order Gn−1.

The iterative, post-Minkowskian method described in this section is technically demand-
ing to carry out, and in the next chapter we shall develop a number of helpful techniques
that permit its successful implementation. Before we start, however, we must learn how to
solve a wave equation in flat spacetime. This is the topic of the following section.
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6.3 Integration of the wave equation

At first sight the wave equation (6.51) appears to be highly non-linear, with the potentials
hαβ present on both sides of the equation. In Sec. 6.2.3 we outlined an iterative procedure
that ensures that in the course of each iteration, the wave equation is actually linear in
hαβ and involves a known source term ταβ . The task of solving the relaxed field equations
therefore appears to be straightforward, and in this section we introduce a number of
powerful techniques to integrate the wave equation.

For simplicity we shall eliminate all unnecessary tensorial indices on the wave equation,
which we now write as

�ψ = −4πμ. (6.63)

The scalar potential ψ(x) plays the role of hαβ , and the source function μ(x) plays the role of
(4G/c4)ταβ ; the remaining factor of 4π is retained for later convenience. Here x = (ct, x)
labels a spacetime event, and we recall that

� := ηαβ∂αβ = − 1

c2

∂2

∂t2
+ ∇2 (6.64)

is the wave operator of Minkowski spacetime. The source function μ(x) is assumed to
be known, but unlike the typical situations encountered in electrodynamics, for example,
it cannot be assumed to be confined to a bounded region of three-dimensional space; it
is instead taken to be distributed over all space. The reason originates from the post-
Minkowskian context: as we have seen, during each iteration of the relaxed field equations,
ταβ is built in part from T αβ , which normally has compact support, and in part from tαβ

LL

and tαβ

H , which do not because they are constructed from hαβ , which extends over all space.
Our source term in Eq. (6.63) will therefore extend over all space, but μ is assumed to
fall off sufficiently rapidly to ensure that ψ decays at least as fast as r−1 (where r := |x|).
Occasionally we shall find it useful to decompose μ into a piece μc with compact support
(analogous to T αβ) and a piece μnc with non-compact support.

A summary of our main results in this section is contained in Box 6.7.

6.3.1 Retarded Green’s function

The central tool to integrate Eq. (6.63) is the retarded Green’s function G(x, x ′), a solution
to

�G(x, x ′) = −4πδ(x − x ′) = −4πδ(ct − ct ′)δ(x − x′) , (6.65)

with the property that G(x, x ′) vanishes when x is in the past of x ′. As we show in Box 6.5,
the Green’s function is given explicitly by

G(x, x ′) = δ(ct − ct ′ − |x − x′|)
|x − x′| , (6.66)
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where

|x − x′| :=
√

(x − x ′)2 + (y − y′)2 + (z − z′)2 (6.67)

is the Euclidean distance between the field point x and the source point x′. Alternatively,
the Green’s function can be expressed as

G(x, x ′) = 2�(ct − ct ′) δ
[
(ct − ct ′)2 − |x − x′|2], (6.68)

in terms of the flat spacetime interval �s2 between x and x ′; here �(ct − ct ′) is the
Heaviside step function, which is equal to one when ct > ct ′ and zero when ct < ct ′.

Box 6.5 Green’s function for the wave equation

To construct a solution to Eq. (6.65) we write the Green’s function as the Fourier transform

G(x, x ′) = 1

2π

∫
G̃(k; x, x′)e−ik(ct−ct ′) dk, (1)

and we represent the time delta function as

δ(ct − ct ′) = 1

2π

∫
e−ik(ct−ct ′) dk.

Substituting these expressions into Green’s equation yields(∇2 + k2
)
G̃(k; x, x′) = −4πδ(x − x′). (2)

When k = 0 this equation reduces to Green’s equation for the Poisson equation, and from this comparison
we learn that G̃(0; x, x′) = |x − x′|−1.
We can anticipate that for k �= 0, G̃ will be of the form

G̃(k; x, x′) = g(k, |x − x′|)
|x − x′| , (3)

with g representing a function that stays non-singular when the second argument, R := |x − x′|, ap-
proaches zero. That G̃ should depend on the spatial variables through R only can be justified on the grounds
that three-dimensional space is both homogeneous (so that G̃ can depend only on the vector R := x −
x′) and isotropic (so that only the length of the vector matters, and not its direction). That G̃ should behave
as 1/R when R is small is justified by the following discussion.
We take Eq. (2) and integrate both sides over a sphere of small radius ε centered at x′. Since∇2G̃ =

∇ · ∇G̃ , we can use Gauss’s theorem to get∮
R=ε

∇G̃ · d S + k2
∫

R<ε

G̃ d3x = −4π,

where d S is the surface element on the sphere. In this equation, the volume integral is of order G̃ε3 and it
contributes nothing in the limit ε → 0, unless G̃ happens to be as singular as 1/ε3. The surface integral,
on the other hand, is equal to

4πε2 dG̃

d R

∣∣∣∣
R=ε

.
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If G̃ were to behave as 1/ε3, then dG̃/d R would be of order 1/ε4, the surface integral would con-
tribute a term of order1/ε2, and the left-hand side could never give rise to the required−4π . We conclude
that G̃ cannot be so singular, and that the left-hand side is dominated by the surface integral. This implies
that G̃ must be of order 1/ε, as was anticipated in Eq. (3). Setting G̃ = g/R returns−4πg(k, ε) +
O(ε) for the surface integral, and this gives us the condition g(k, 0) = 1. We also recall that
g(0, R) = 1.
We may now safely take R �= 0 and substitute Eq. (3) into Eq. (2), taking its right-hand side to be zero.

Since G̃ depends on x only through R, the Laplacian operator becomes

∇2 → 1

R2

d

d R
R2 d

d R
.

Acting with this on G̃ = g/R yields g′′/R and Eq. (2) becomes

g′′ + k2g = 0,

with a prime indicating differentiation with respect to R. With the boundary condition at R = 0 specified
previously, two linearly independent solutions to this equation are

g±(k, R) = e±ik R.

Substituting this into Eq. (3), and that into Eq. (1), we obtain

G±(x, x ′) = 1

2π

∫
e±ik R

R
e−ik(ct−ct ′) dk = 1

2π R

∫
e−ik(ct−ct ′∓R) dk,

or

G±(x, x ′) = δ
(
ct − ct ′ ∓ |x − x′|)

|x − x′| . (4)

The function G+(x, x ′), which is non-zero when ct − ct ′ = +R, is known as the retarded Green’s
function; the function G−(x, x ′), which is non-zero when ct − ct ′ = −R, is known as the
advanced Green’s function.
The retarded Green’s function can be expressed in the alternative form

G+(x, x ′) = 2�(ct − ct ′)δ
[
(ct − ct ′)2 − |x − x′|2]. (5)

The new argument of the delta function factorizes as (ct − ct ′ − R)(ct − ct ′ + R), and when
c(t − t ′) > 0 only the first factor may go through zero; the second factor is then equal to 2R, and the
delta function is distributionally equal to δ(ct − ct ′ − R)/(2R). At this stage the step function be-
comes redundant, because the delta function is active only when c(t − t ′) > 0, and we have reproduced
Eq. (4).
Similarly, the advanced Green’s function can be expressed as

G−(x, x ′) = 2�(ct ′ − ct)δ
[
(ct − ct ′)2 − |x − x′|2].
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In terms of the retarded Green’s function G(x, x ′), the solution to Eq. (6.63) is

ψ(x) =
∫

G(x, x ′)μ(x ′) d4x ′, (6.69)

where d4x ′ = d(ct ′)d3x ′. After substitution of Eq. (6.66) and integration over d(ct ′), this
becomes

ψ(t, x) =
∫

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′. (6.70)

This is the retarded solution to the wave equation, and the domain of integration extends
over C (x), the past light cone of the field point x = (ct, x).

6.3.2 Near zone and wave zone: slow-motion condition

In the following subsection the domain C (x) will be partitioned into a near-zone domain
N and a wave-zone domain W . Our task in this subsection is to introduce the important
notions of near and wave zones in the general context of the wave equation (6.63).

To do so we introduce the following scaling quantities:

tc := characteristic time scale of the source, (6.71a)

ωc := 2π

tc
= characteristic frequency of the source, (6.71b)

λc := 2πc

ωc
= ctc = characteristic wavelength of the radiation. (6.71c)

The characteristic time scale tc is the time required for noticeable changes to occur within
the source; it is defined such that ∂tμ is typically of order μ/tc over the support of the
source function. The characteristic frequency ωc and wavelength λc are derived directly
from tc. If, for example, μ oscillates with a frequency ω, then tc ∼ 2π/ω, ωc ∼ ω, and
λc ∼ 2πc/ω.

The near zone and the wave zone are defined as

near zone: r � λc = 2πc

ωc
= ctc, (6.72a)

wave zone: r � λc = 2πc

ωc
= ctc. (6.72b)

Thus, the near zone is the region of three-dimensional space in which r := |x| is small
compared with a characteristic wavelength λc, while the wave zone is the region in which
r is large compared with this length scale. As we can see from the example of Box 6.6, the
potential behaves very differently in the two zones: in the near zone the difference between
τ := t − r/c and t is small (the field retardation is unimportant), and time derivatives
are small compared with spatial derivatives; in the wave zone the difference between
τ = t − r/c and t is large, and time derivatives are comparable to spatial derivatives. These
properties are shared by all generic solutions to the wave equation.



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-06 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:40

312 Post-Minkowskian theory: Formulation

Another important feature of the near zone concerns the quantity (r/c)∂tμ. This is of
order (r/c)(μ/tc), or (r/λc)μ, which is much smaller than μ. In the near zone, therefore,

r

c

∂μ

∂t
= O

( r

λc
μ

)
� μ. (6.73)

This states, simply, that the source retardation is unimportant within the near zone.
Thus far our considerations have been general, and our definitions of near and wave zones

apply whether the source function μ is extended over all space or confined to a bounded
region V . In addition, our definitions apply independently of the existence of a slow-motion
condition, to which we turn next.

When the source function μ has a piece μc with compact support, we can introduce the
additional scaling quantities

rc := characteristic length scale of the compact-support source, (6.74a)

vc := rc

tc
= characteristic velocity within the source. (6.74b)

The characteristic radius rc is defined such that μc vanishes outside a sphere of radius rc;
this part of μ has support only within this sphere. The characteristic velocity vc is defined
in terms of the scales rc and tc; it represents the speed with which changes in the source
propagate across the region of space occupied by the source. In the case of a fluid, for
example, vc would be associated with the speed of sound within the fluid. In a binary-star
system, vc would be associated with the orbital velocities of the stars.

A slow-motion condition is in effect when the characteristic velocity vc is small compared
with the speed of light:

vc � c (slow-motion condition). (6.75)

It then follows from Eq. (6.75) that

rc � λc (slow-motion condition); (6.76)

this equation states that μc is necessarily situated deep within the near zone when a slow-
motion condition is in effect.

Box 6.6 Dipole solution to the wave equation

We examine the solution to a specific version of Eq. (6.63),

ψ = ( p · n)

[
cos ω(t − r/c)

r2
− ω

c

sin ω(t − r/c)

r

]
,

which corresponds toμ = − p · ∇δ(x) cos ωt . Here p is a constant vector, r := |x|, n := x/r is
the unit radial vector, andω is an angular frequency. Physically speaking, this solution represents the scalar
potential of a dipole of constant direction p, oscillating in strength with a frequency f = ω/(2π); the
wavelength of the radiation produced by the oscillating dipole isλ = c/ f = 2πc/ω.
Our first observation is thatψ behaves very differently depending onwhetherr is small or large compared

with λ. When r � λ = 2πc/ω, the trigonometric functions can be expanded in powers ofωr/c, and
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the result is

ψ = ( p · n)
cos ωt

r2

[
1 + O

(
ω2r2

c2

)]
(near zone),

with a correction term that is quadratic in r/λ � 1. We observe also that in the near zone – the region
r � λ – the derivatives ofψ are related by

∂tψ

c|∇ψ | = O
(ωr

c

)
(near zone).

In the near zone, therefore, a time derivative is smaller than a spatial derivative (multiplied by c) by a factor
of order r/λ � 1.
When, on the other hand, r � λ = 2πc/ω, it is no longer appropriate to expand the trigonometric

functions, and the potential must be expressed as

ψ = −( p · n)
ω

c

sin ωτ

r

[
1 + O

(
c

ωr

)]
(wave zone),

in terms of the retarded-time variable τ := t − r/c; here the difference between τ and t is large, and the
correction term is linear in λ/r � 1. We observe also that in the wave zone – the region r � λ – the
derivatives ofψ are related by

∂tψ

c|∇ψ | = O(1) (wave zone).

To obtain this result we have used the fact that the spatial dependence contained in n and r−1 produces a
spatial derivative of fractional order λ/r , while the spatial dependence contained in τ = t − r/c pro-
duces a spatial derivative of order unity. In the wave zone, therefore, a time derivative has the same order of
magnitude as a spatial derivative (multiplied by c).

6.3.3 Integration domains

The integral of Eq. (6.70) extends over the past light cone C (x) of the field point x . To
evaluate the integral we partition C (x) into two pieces, the near-zone domain N (x) and
the wave-zone domain W (x). We place the boundary of the near and wave zones at an
arbitrarily selected radius R, with R imagined to be of the same order of magnitude as λc,
the characteristic wavelength of the radiation emitted by μ. The near zone is then imagined
as a three-dimensional ball of radius R that traces out a world tube D in spacetime. We let
N (x) be the part of C (x) where r ′ := |x′| < R, and we let W (x) be the part of C (x) where
r ′ > R. The near-zone and wave-zone domains join together to form the complete light
cone of the field point x : N (x) + W (x) = C (x). The domains are illustrated in Fig. 6.1.

We write Eq. (6.70) as

ψ(x) = ψN (x) + ψW (x), (6.77)
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x

(x)

(x)

(x)

Fig. 6.1 Integration domains for the retarded solution of the wave equation:C (x) is the past light cone of the field point x;D
is the world tube traced by a three-dimensional ball of radiusR, which contains the near-zone region of spacetime;
N (x) is the intersection ofC (x) with the near zone; andW (x) is the remaining piece of the light cone.

where

ψN (x) =
∫

N
G(x, x ′)μ(x ′) d4x ′ (6.78)

is the near-zone portion of the light-cone integral, while

ψW (x) =
∫

W
G(x, x ′)μ(x ′) d4x ′ (6.79)

is the wave-zone portion. Methods to evaluate ψN and ψW will be developed in the follow-
ing two subsections. It is an important fact that while ψN and ψW will individually depend
on the cutoff parameterR, their sum ψ = ψN + ψW will necessarily be independent ofR.
The R-dependence of ψN and ψW is therefore unimportant, and it can freely be ignored.
This observation will serve as a helpful simplifying tool in many subsequent computations.

6.3.4 Integration over the near zone

In this subsection we develop methods to evaluate

ψN (x) =
∫

N

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′, (6.80)

the near-zone contribution to the complete solution ψ = ψN + ψW to the wave equation.
We recall that the domain of integration N is the intersection between C (x), the past light
cone of the field point x , and the near zone r ′ < R.
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Wave-zone field point

We first evaluate Eq. (6.80) when x is situated in the wave zone, that is, when r > R. For
this purpose we introduce a modified integrand,

μ(t − |x − x′|/c, x′)
|x − x′| =

∫
μ(t − |x − x′|/c, y)

|x − x′| δ( y − x′) d3 y

=:
∫

g(x, x′, y)δ( y − x′) d3 y , (6.81)

in which we can treat x′ and y as independent variables. Knowing that x′ lies within the
near zone, we treat it as a small vector, and express g as a Taylor expansion about x′ = 0.
Keeping just a few terms in this expansion, we have

g(x, x′, y) = g(x, 0, y) + ∂g

∂x ′ j
x ′ j + 1

2

∂2g

∂x ′ j x ′k x ′ j x ′k + · · · , (6.82)

in which all derivatives are evaluated at x′ = 0. But ∂g/∂x ′ j = −∂g/∂x j because g depends
on x′ only through the combination |x − x′|, and our Taylor expansion can be expressed as

g(x, x′, y) = g(x, 0, y) − ∂g

∂x j
x ′ j + 1

2

∂2g

∂x j xk
x ′ j x ′k + · · · (6.83)

The derivatives of g are still evaluated at x′ = 0, but because the differentiation is now
carried out with respect to x, we can set x′ = 0 in g before taking the derivatives. Observing
that g then becomes a function of |x| = r only, we have

g(x, x′, y) = g(r, 0, y) − ∂g(r, 0, y)

∂x j
x ′ j + 1

2

∂2g(r, 0, y)

∂x j xk
x ′ j x ′k + · · · (6.84)

Keeping all terms of the Taylor expansion, this is

g(x, x′, y) =
∞∑

�=0

(−1)�

�!
x ′L∂L g(r, 0, y), (6.85)

where L := j1 j2 · · · j� is a multi-index of the sort introduced back in Sec. 1.5.3. More
explicitly, we have established the identity

μ(t − |x − x′|/c, y)

|x − x′| =
∞∑

�=0

(−1)�

�!
x ′L∂L

μ(t − r/c, y)

r
. (6.86)

The dependence of μ/r on the variables x j is contained entirely within r .
Inserting this within Eq. (6.81) to restore y = x′, and substituting the result into

Eq. (6.80), we arrive at

ψN (t, x) =
∞∑

�=0

(−1)�

�!
∂L

[
1

r

∫
M

μ(τ, x′)x ′L d3x ′
]
, (6.87)

where

τ := t − r/c (6.88)
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x

Fig. 6.2 Near-zone integration, wave-zone field point. The domainM is a surface of constant time bounded externally by the
sphere r′ = R.

is a retarded-time variable. Note that the temporal dependence of the source function no
longer involves x′, the variable of integration. The domain of integration has therefore
become a surface of constant time (the constant being equal to τ ) bounded externally by
the sphere r ′ = R. This domain is denoted M in Eq. (6.87), and is illustrated in Fig. 6.2.

Equation (6.87) is valid everywhere within the wave zone. It simplifies when r → ∞,
that is, when ψN is evaluated in the far-away wave zone. In this limit we retain only the
dominant, r−1 term in ψN , and we approximate Eq. (6.87) by

ψN = 1

r

∞∑
�=0

(−1)�

�!

∫
M

∂Lμ(τ, x′)x ′L d3x ′ + O(r−2). (6.89)

The dependence of μ on x j is contained in τ , so that ∂ jμ = −c−1μ(1)∂ j r = −c−1μ(1)n j ,
in which μ(1) denotes the first derivative of μ with respect to τ . We used the fact that

∂ j r = n j , (6.90)

where n j = x j/r is the unit radial vector. Invoking this result once more, we find that
∂ jkμ = c−2μ(2)n j nk + O(r−1), and continuing along these lines reveals that in general,
∂Lμ = (−1)�c−�μ(�)nL + O(r−1). Inserting this into our previous expression for ψN , we
find that Eq. (6.87) becomes

ψN (t, x) = 1

r

∞∑
�=0

1

�!c�
nL

(
d

dτ

)� ∫
M

μ(τ, x′)x ′L d3x ′ + O(r−2) (6.91)
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x

Fig. 6.3 Near-zone integration, near-zone field point.

in the far-away wave zone. This is a multipole expansion for the potential ψN , in which
each �-pole moment

∫
M μx L d3x is differentiated �-times with respect to τ . Note that

nL x ′L = n j1 n j2 · · · n j� x ′ j1 x ′ j2 · · · x ′ j� = (n · x′)�.

Near-zone field point

We next evaluate Eq. (6.80) when x is situated in the near zone, that is, when r = |x| < R.
In this situation, both x and x′ lie within the near zone, and |x − x′| can be treated as a
small quantity. To evaluate the integral we simply Taylor-expand the time-dependence of
the source function,

μ(t − |x − x′|/c) = μ(t) − 1

c

∂μ

∂t
|x − x′| + 1

2c2

∂2μ

∂t2
|x − x′|2 + · · · ,

in which all derivatives are evaluated at time t . Substituting this expansion into Eq. (6.80)
produces

ψN (t, x) =
∞∑

�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

μ(t, x′)|x − x′|�−1 d3x ′, (6.92)

which is valid everywhere within the near zone. Note that once more the domain of
integration is M , a surface of constant time bounded externally by the sphere r ′ = R; here,
however, the integral is evaluated at time t instead of at the retarded time τ . The geometry
is illustrated in Fig. 6.3.
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6.3.5 Integration over the wave zone

In this subsection we develop a method to evaluate

ψW (x) =
∫

W

μ(t − |x − x′|/c, x′)
|x − x′| d3x ′, (6.93)

the wave-zone portion of the complete solution ψ = ψN + ψW to the wave equation. We
recall that the domain of integration W is the intersection between C (x), the past light cone
of the field point x , and the wave zone r ′ > R.

Before we proceed with the work, we pause and ask whether ψW (x) could be dispensed
with by taking the limit R → ∞, thereby achieving ψN → ψ and ψW → 0. The answer
is no: we cannot take R beyond its original value of order λc, and we cannot dispense with
ψW . The reason can be gleaned from Figs. 6.2 and 6.3: The difference between the domain
M and the light cone C (x) becomes increasingly large as R increases, and the Taylor
expansion for μ(t − |x − x′|/c) becomes increasingly inaccurate; the resulting expression
for ψN would then become increasingly unreliable as R increases beyond λc. This lesson
was hard learned. Early attempts to integrate the wave equation of post-Minkowskian theory
were indeed based on the limit R → ∞, with the expectation that ψN would make a good
approximation to ψ . Such attempts led to a host of divergent integrals that had to be argued
away or swept under the rug. While these methods could sometimes be teased to give correct
physical results, their mathematical justification left a lot to be desired. The decomposition
of ψ into near-zone and wave-zone pieces nicely overcomes all these difficulties.

Our method to integrate over W must reflect the nature of the integrand there, and the
fact that we are integrating over a null cone instead of a surface of constant time. For the
slow-motion systems that we will generally encounter, the compact-support piece of μ lies
deep within the near zone, and therefore vanishes on W . The extended piece survives, and it
is built from potentials that are themselves solutions to the wave equation. This implies that
for a given integration point (ct ′, x′) on W , μnc is predominantly a function of t ′ − r ′/c.
Integration over the light cone is therefore facilitated by adopting retarded time as a variable
of integration. The strategy is therefore this: express the integral of Eq. (6.93) in terms of
the spherical coordinates (r ′, θ ′, φ′), and then switch variables from r ′ to u′ := ct ′ − r ′ in
order to perform the integration.

The strategy lends itself to a nice geometrical representation (see Fig. 6.4). A surface
u′ = constant is a future-directed null cone F that emanates from r ′ = 0. It intersects
C (x) on a two-dimensional surface S (u′) parameterized by the angular variables θ ′ and
φ′. Integration on C (x) can therefore be achieved by integrating over S (u′) and adding the
contributions from each relevant F . Integrating on S (u′) amounts to varying θ ′ and φ′

over their allowed range, and the integration over C (x) is completed by varying u′, which
ranges from u′ = −∞ to u′ = u := ct − r ; the final value of u′ corresponds to a future null
cone that is tangent to C (x), emanating from the spacetime event at which r ′ = 0 crosses
C (x).

To make these ideas explicit, we first provide a mathematical expression for S (u′).
Because ct ′ = ct − |x − x′| on C (x) and ct ′ = u′ + r ′ on F , we find that it is described



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-06 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:40

319 6.3 Integration of the wave equation

x

S (u′)

r′ = 0

F

C (x)

Fig. 6.4 Geometrical representation of the wave-zone integrations.C (x) is the past light cone of the field point x.F is the
future light cone u′ = ct′ − r′ = constant with apex at r′ = 0.S (u′) is the two-dimensional surface of
intersection between the past and future light cones.

by

u′ = ct − r ′ − |x − x′| , (6.94)

in which u′ and t are constant. The equation can be solved for r ′ expressed as a function of
θ ′ and φ′:

r ′(u′, θ ′, φ′) = (ct − u′)2 − r2

2(ct − u′ − n′ · x)
, (6.95)

where n′ := x′/r ′. We next return to Eq. (6.93) and change variables from r ′ to u′, using

∂u′

∂r ′ = n′ · ∇′u′ = u′ − ct + n′ · x

|x − x′| . (6.96)

This yields

ψW =
∫ u

−∞
du′

∮
S (u′)

μ((u′ + r ′)/c, x′)
ct − u′ − n′ · x

r ′(u′, θ ′, φ′)2 d�′ , (6.97)

our new starting expression to calculate the wave-zone contribution to the potential ψ(x).
To proceed it will be necessary to restrict our attention to source functions of the form

μ(x ′) = 1

4π

f (τ ′)
r ′n n′〈L〉, (6.98)
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where f is an arbitrary function of τ ′ = t ′ − r ′/c, n is an arbitrary integer, and n′〈L〉 is an
STF product of � radial vectors n′ j = x ′ j/r ′; these angular tensors were introduced back in
Sec. 1.5.3, and we recall that they are closely related to the spherical-harmonic functions
Ylm(θ ′, φ′). Fortunately, the restriction imposed here is not too severe from a practical point
of view: All source functions to be inserted in wave-zone integrals in this book will be
superpositions of the irreducible forms displayed in Eq. (6.98).

Substituting Eq. (6.98) into Eq. (6.97), we obtain

ψW = 1

4π

∫ u

−∞
du′ f (u′/c)

∮
S (u′)

n′〈L〉

r ′(u′, θ ′, φ′)n−2

d�′

ct − u′ − n′ · x
. (6.99)

The angular integration can be simplified by orienting the coordinate axes so that the
selected field point x is aligned with the z-direction, so that n = ez ; this specific choice
will be undone at the end of our computation. We make use of Eq. (1.164),

n′〈L〉 = N�

�∑
m=−�

Y 〈L〉
�m Y�m(θ ′, φ′), (6.100)

where N� := 4π�!/(2� + 1)!!, integrate over dφ′, and observe that since the rest of the
integrand is independent of φ′, the only surviving term in the sum is m = 0. Insert-
ing now Y�0 = [(2� + 1)/4π ]1/2 P�(cos θ ′) and Y 〈L〉

�0 = [4π/(2� + 1)]1/2 N−1
� e〈L〉

z within the
integral, we obtain

ψW = 1

2
n〈L〉

∫ u

−∞
du′ f (u′/c)

∫
S (u′)

P�(ξ )

r ′(u′, ξ )n−2(ct − u′ − rξ )
dξ , (6.101)

in which ξ := cos θ ′ and

r ′(u′, ξ ) := r ′(u′, θ ′, 0) = (ct − u′)2 − r2

2(ct − u′ − rξ )
. (6.102)

Switching integration variables from ξ back to r ′, using the fact that ∂ξ/∂r ′ = (ct − u′ −
rξ )/rr ′, we recast ψW in the elegant form

ψW = n〈L〉

2r

∫ u

−∞
du′ f (u′/c)

∫
S (u′)

P�(ξ )

r ′(n−1)
dr ′ , (6.103)

in which ξ is now the function of r ′ determined by Eq. (6.102); an explicit expression will
be provided below. We observe that the angular dependence of ψW is contained in the factor
n〈L〉, with n previously chosen to be aligned with the z-direction. But since the remaining
integral is now independent of all angles, the orientation of the coordinate axes has become
irrelevant, and the special choice n = ez immaterial; we may now take n to the point in
the arbitrary direction specified by the polar angles θ and φ. The potential ψW has thus
become a function of (t, r, θ, φ), with the dependence on t contained within u = ct − r .

To complete the wave-zone integration we must now give an explicit description of the
closed surface S (u′), and specify the limits of the integral over dr ′ so as to exclude the
near zone from the domain of integration. The specific limits depend on whether the field
point is in the near zone or in the wave zone.
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x

S (u′)

x

S (u′)A′

B′

x

S (u′)
A B

Fig. 6.5 Integration over the domainW (x), for a field point x in the wave zone, is carried out over each intersection surface
S (u′) in a sequence of future null cones u′ = constant. The left panel corresponds to u′ < u − 2R; the
integration runs from ξ = −1 (pointA) to ξ = 1 (pointB). The center panel corresponds to u′ > u − 2R; the
intersectionS (u′) terminates atA′, the boundary of the near zoneN . The right panel corresponds to u′ = u; the
cones are tangent, andS (u′) runs from the edge of the near zone to x.

Wave-zone field point

To begin we assume that the field point x is situated in the wave zone, so that r > R.
We recall that S (u′) is the intersection between the past null cone C (x) and the future
null cone u′ = constant. From Fig. 6.5 we see that when u′ < u − 2R, S (u′) does not
encounter the boundary of the near zone, and in this case ξ ranges from ξ = −1, at which
r ′ = 1

2 (ct − u′ − r ) = 1
2 (u − u′), to ξ = 1, at which r ′ = 1

2 (ct − u′ + r ) = 1
2 (u − u′) + r ;

these limits correspond to the events A and B in the left panel of Fig. 6.5. When u − 2R ≤
u′ ≤ u we see that S (u′) runs into the boundary of the near zone, and in this case the
lower bound on r ′ must be r ′ = R, with the corresponding value of ξ > −1 obtained from
Eq. (6.102); the upper bound on r ′ is still 1

2 (u − u′) + r , and these limits correspond to
events A′ and B′ in the center panel of Fig. 6.5. The integration terminates when u′ = u,
as depicted on the right panel.

Defining s := 1
2 (u − u′) and the functions

A(s, r ) :=
∫ r+s

R

P�(ξ )

r ′(n−1)
dr ′ , (6.104a)

B(s, r ) :=
∫ r+s

s

P�(ξ )

r ′(n−1)
dr ′ , (6.104b)

we obtain the final expression

ψW (t, r, θ, φ) = n〈L〉

r

{∫ R

0
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
(6.105)

for the wave-zone contribution to the potential ψ(x), when x is situated in the wave zone.
The quantity ξ that appears in A and B is determined by Eq. (6.102), in which we insert
the definitions u = ct − r and s = 1

2 (u − u′); this yields

ξ = r + 2s

r
− 2s(r + s)

rr ′ , (6.106)

with ξ = 1 when r ′ = r + s and ξ = −1 when r ′ = s.
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x

S (u′)

x

S (u′)
B′

A′

B″
x

BA

Fig. 6.6 Integration over the domainW (x), for a field point x in the near zone. The left panel corresponds to u′ < u − 2R;
the integration runs from ξ = −1 (pointA) to ξ = 1 (pointB). The center panel corresponds to u′ > u − 2R;
the intersectionS (u′) terminates atA′, the boundary of the near zoneN . The right panel corresponds to
u′ = u − 2R + 2r; the future cone intersects the past cone at ξ = 1 (pointB′′) at the edge of the near zone.

Near-zone field point

We next take the field point x to be situated in the near zone, so that r < R. In this case we
find again that when u′ < u − 2R, S (u′) does not encounter the near zone and ξ ranges
from −1 to +1 (represented by the points A and B in the left panel of Fig. 6.6). When
u′ > u − 2R, the integration runs from point A′ in the center panel of Fig. 6.6, at which
r ′ = R, to point B ′, at which ξ = 1. But there is now a maximum value of u′ at which
the future null cone intersects C (x) at ξ = 1 (point B′′ in the right panel), corresponding
to u′ = u − 2R + 2r ; here the integration terminates. In this case, the minimum value of
s := 1

2 (u − u′) is R − r , and we obtain the expression

ψW (t, r, θ, φ) = n〈L〉

r

{∫ R

R−r
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
(6.107)

for the wave-zone contribution to the potential ψ(x), when x is situated in the near zone.
The functions A(s, r ) and B(s, r ) are again given by Eq. (6.104), and ξ is still given by
Eq. (6.106).

Equation (6.105) is a concrete expression for the ψW (x) of Eq. (6.93) when the field
point x is in the wave zone, and Eq. (6.107) is the corresponding expression when x is in the
near zone. In both cases the source function μ(x ′) takes the form displayed in Eq. (6.98),
with f (τ ′) describing its temporal behavior, r ′−n describing its radial profile, and n′〈L〉

describing its angular profile. Note that ψW (x) depends on the entire past history of the
system, because f must be evaluated at retarded times τ − 2s/c all the way back to −∞.
This is a direct consequence of the fact that the source μ is not bounded by the near zone,
and is generated by retarded fields that are themselves solutions to the wave equation. In
post-Minkowskian theory, this feature is a consequence of the non-linearity of the Einstein
field equations, which imply that the gravitational field itself generates gravity. While it
may seem like a daunting task to evaluate the integrals of Eqs. (6.105) and (6.107), we
shall find that they can be evaluated relatively easily for many interesting situations, with
physically reasonable assumptions about the past behavior to ensure convergence.
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Estimates

It is instructive to give crude estimates to the integrals of Eqs. (6.105) and (6.107). Suppose
first that we wish to evaluate Eq. (6.105) in the far-away wave zone, and keep only its
dominant, r−1 part. Taking P�(ξ ) to be of order unity, we approximate the functions defined
by Eqs. (6.104) as A ∼ ∫ ∞

R p−(n−1) dp ∼ R−(n−2) and B ∼ ∫ ∞
s p−(n−1) dp ∼ s−(n−2); we

ignore all numerical factors and exclude the special case n = 2. Inserting A into the first
integral of Eq. (6.105) yields R−(n−2)

∫ R
0 f (τ − 2s/c) ds. Taking R to be small, we Taylor-

expand f (τ − 2s/c) about s = 0 and integrate term by term. A typical term in the expansion
is

Rq+1

cqRn−2
f (q)(τ ),

where the superscript (q) indicates the number of derivatives with respect to τ . As was
motivated in the paragraph that follows Eq. (6.79), we are interested in the R-independent
part of ψW . In order to extract this from our previous expansion, we retain the term q =
n − 3 and discard all others. An estimate for the first integral is therefore c−(n−3) f (n−3)(τ ).
We next substitute B into the second integral of Eq. (6.105) and obtain

∫ ∞
R s−(n−2) f (τ −

2s/c) ds. Assuming that f and all its derivatives vanish in the infinite past, repeated
integration by parts returns an expression of the form

f (τ − 2R/c)

Rn−3
+ f (1)(τ − 2R/c)

cRn−4
+ f (2)(τ − 2R/c)

c2Rn−5
+ · · ·

The R-independent part of this is easily seen to be of the form c−(n−3) f (n−3)(τ ), as we had
for the first integral. We conclude that a crude estimate for Eq. (6.105) is

ψW ∼ 1

cn−3

n〈L〉

r
f (n−3)(τ ) (far-away wave zone). (6.108)

The estimate ignores numerical factors, R-dependent terms, and terms that decay faster
than r−1.

This estimate leads us to expect that the contribution from the wave-zone integral will
be a small correction at any given iteration order of post-Minkowskian theory. First, the
source function f is built from the pseudotensors tαβ

LL and tαβ

H , which are quadratic in
hαβ and therefore much smaller than the potentials themselves. Second, depending on n,
the power with which the source falls off with r−1, there will be additional time deriva-
tives acting on f , generating additional powers of vc/c. Accordingly, in many cases we
will be able to ignore the contributions of the wave-zone integrals. But even when we
are required to calculate those contributions, we will be able to do so using only the
leading-order contributions to f . We will see a specific example of such a calculation in
Sec. 7.4.
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Suppose next that we wish to evaluate Eq. (6.107) deep within the near zone, for r � R.
Here the first integral of Eq. (6.107) is approximated as

∫ R
R−r ds f (τ − 2s/c)A(s, r ) ∼

r f (τ − 2R/c)A(R, r ), with A(R, r ) ∼ ∫ r+R
R p−(n−1) dp ∼ rR−(n−1). This produces the

estimate

r2

Rn−1
f (τ − 2R/c)

for the first integral, and the R-independent part of this is c−(n−1)r2 f (n−1)(τ ). The second
integral of Eq. (6.107) involves the domain of integration R < s < ∞. Because s is large
compared with r , we have the estimate B ∼ ∫ r+s

s p−(n−1) dp ∼ rs−(n−1). Inserting this
inside the integral gives r

∫ ∞
R s−(n−1) f (τ − 2s/c) ds, and repeated integration by parts

returns an expression of the form

r f (τ − 2R/c)

Rn−2
+ r f (1)(τ − 2R/c)

cRn−3
+ r f (2)(τ − 2R/c)

c2Rn−4
+ · · ·

The R-independent part of this is of the form c−(n−2)r f (n−2)(τ ). Collecting results, we
conclude that a crude estimate for Eq. (6.107) is

ψW ∼ 1

cn−2
n〈L〉

[
f (n−2)(τ ) + cr f (n−1)(τ )

]
(near zone). (6.109)

The estimate ignores numerical factors and all R-dependent terms. In Sec. 7.3.4 we will
learn that these contributions can be completely ignored for all our purposes in this book.

The case n = 2, for which μ falls off as r−2, is special because the functions A and B
are now logarithmic in R and s, and thus cannot be handled by our simple power-counting
methods. We shall see that such terms are important in post-Minkowskian theory, and
generate what are known as gravitational-wave “tails.” We perform these computations,
and describe these effects, in Chapter 11.

Box 6.7 Solution to the wave equation

The solution to the wave equation�ψ = −4πμ can be decomposed as

ψ = ψN + ψW ,

whereψN is the near-zone portion of the integral over the past light-coneC (x) of the field-point x , while
ψW is the wave-zone portion. The boundary between the near and wave zones is placed at r ′ = R =
O(λc), whereλc is a characteristic wavelength of the radiation.
When the field point x = (ct, x) is in the wave zone,

ψN (x) =
∞∑

�=0

(−1)�

�!
∂L

[
1

r

∫
M

μ(τ, x′)x ′L d3x ′
]

,

ψW (x) = n〈L〉

r

{∫ R

0
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
.
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And when x is in the near zone,

ψN (x) =
∞∑

�=0

(−1)�

�!c�

(
∂

∂t

)� ∫
M

μ(t, x′)|x − x′|�−1 d3x ′,

ψW (x) = n〈L〉

r

{∫ R

R−r
ds f (τ − 2s/c)A(s, r ) +

∫ ∞

R
ds f (τ − 2s/c)B(s, r )

}
.

Here τ := t − r/c is retarded time,M is a surface of constant time bounded externally by the sphere
r ′ = R, and L is a multi-index that contains a number � of individual spatial indices. ForψW we have
assumed that the source functionμ is of the specific form

μ(x) = 1

4π

f (τ )

rn
n〈L〉,

in which n = x/r , and we have defined

A(s, r ) :=
∫ r+s

R

P�(ξ )

r ′(n−1)
dr ′ , B(s, r ) :=

∫ r+s

s

P�(ξ )

r ′(n−1)
dr ′ ,

where ξ = (r + 2s)/r − 2s(r + s)/(rr ′).

6.4 Bibliographical notes

The formulation of the Einstein field equations detailed in Sec. 6.1 was first proposed by
Landau and Lifshitz in their classic textbook The Classical Theory of Fields, now available
in a fourth English edition (2000). Rigorous definitions for the total mass, momentum, and
angular momentum of an asymptotically-flat spacetime were provided in a sequence of
papers by Arnowitt, Deser, and Misner; their work is based on Hamiltonian methods, and
is conveniently summarized in their 1962 review article.

The relaxation of the Einstein field equations described in Sec. 6.2 has become a standard
tool of the field. The idea originated in Havas and Goldberg (1962), and it is beautifully
summarized in Ehlers et al. (1976); another useful reference is Walker and Will (1980). The
curved-spacetime formulation of the relaxed field equations in Box 6.3 was first proposed
by Thorne and Kovacs (1975).

The mathematical methods introduced in Sec. 6.3 to integrate the wave equation when the
source is extended over all space were first devised by Wiseman and Will (1991). They form
the core of the DIRE approach (Direct Integration of the Relaxed Einstein equations) to post-
Minkowskian theory, initiated by Will and Wiseman (1996) and developed systematically
by Pati and Will (2000 and 2001). An alternative approach, based on a formal multipolar
expansion of the potential outside the source, was pursued by Blanchet, Damour, Iyer, and
their collaborators; this work is nicely summarized in Blanchet’s Living Reviews article
(2006).
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6.5 Exercises

6.1 Show that gαβ = √−g gαβ , where gαβ is the matrix inverse to gαβ , and g = det[gαβ] =
g. If we define gαβ := ηαβ − hαβ , and hαβ is of order G, show that

(−g) = 1 − h + 1

2
h2 − 1

2
hμνhμν + O(G3) ,

gαβ = ηαβ + hαβ − 1

2
hηαβ + hαμhμ

β − 1

2
hhαβ

+
(

1

8
h2 − 1

4
hμνhμν

)
ηαβ + O(G3) ,

where indices on hαβ are lowered and contracted with the Minkowski metric.

6.2 Show that under the coordinate transformation x ′μ = f μ(xα),

gμ′ν ′ = J−1∂α f μ∂β f νgαβ ,

∂ν ′gμ′ν ′ =
√

−g′ �g f μ(xα) ,

where J := det[∂ f μ/∂xα] is the Jacobian of the transformation, and where for any
scalar function f , �g f = (−g)−1/2∂β(gαβ∂α f ).

6.3 Consider the Schwarzschild metric in harmonic coordinates, given by Eqs. (5.171).
Show explicitly that

g00 = − (1 + R/2r )3

1 − R/2r
,

g jk = δ jk −
(

R

2r

)2

n j nk ,

where R := 2G M/c2, and verify that the harmonic gauge condition ∂βg
αβ = 0 is

satisfied.

6.4 Consider the potentials hαβ for a stationary source (∂0hαβ = 0), in harmonic gauge.
Show that the conserved quantities for the spacetime can be written in terms of the
following surface integrals at infinity:

M = − c2

16πG

∮
∞

r2 ∂h00

∂r
d�,

P j = − c3

16πG

∮
∞

r2 ∂h0 j

∂r
d�,

J jk = − c3

16πG

∮
∞

r2 ∂

∂r

(
x j h0k − xkh0 j

)
d�,

R j = − c2

16πG M

∮
∞

r4 ∂

∂r

(
x j h00

r2

)
d�,

where d� = sin θ dθdφ is the element of solid angle.
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6.5 Consider the stationary metric given by

ds2 = −
(

1 − R

r

)
d(ct)2 − 4GS

c2r
sin2 θ dφdt

+
(

1 + R

r

) (
dr2 + r2 dθ2 + r2 sin2 θ dφ2

)
,

which is accurate to first order in G in a post-Minkowskian expansion; here R =
2G M/c2 and S is a constant.
(a) Working to first order in G, find gαβ and verify that it is in the harmonic gauge.
(b) Using the surface integral formulation, find the mass, momentum, and angular

momentum for this spacetime.

6.6 Using surface integrals, find the center-of-mass position of a spacetime for which

h00 = 4G M

c2|x − a| ,

where a is a constant vector.

6.7 Verify that the harmonic energy-momentum pseudotensor is conserved, so that
∂β[(−g)tαβ

H ] = 0.

6.8 Using the techniques of Sec. 6.3, find the solution to the wave equation �ψ = −4πμ

when μ = − p · ∇δ(x) cos ωt , with p a constant vector. First take x to be in the wave
zone, and find the solution there; then take x to be in the near zone. For the wave-zone
expression, show that the sum over � truncates. For the near-zone expression, show
that the sum does not truncate. Compare your results with those of Box 6.6. Can you
reconcile your results with the exact solution?

6.9 Using the techniques of Sec. 6.3, find the solution to the wave equation �ψ = −4πμ

when μ is equal to μ0(r/r0)4 for r < r0, and to μ0(r0/r )4 for r > r0. You may take
r0 to be smaller than R. You should find that

ψ = 4πμ0r2
0

[
2

3
− 1

42

( r

r0

)6
]

for r < r0, and

ψ = 4πμ0
r3

0

r

(
8

7
− r0

2r

)

when r > r0. Observe that while ψN and ψW both depend on R, the final outcome
for ψ is independent of R.
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